Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Health Sci Rep ; 6(5): e1275, 2023 May.
Article in English | MEDLINE | ID: covidwho-2323923

ABSTRACT

Background and Aims: Saliva samples are less invasive and more convenient for patients than naso- and/or oropharynx swabs (NOS). However, there is no US Food and Drug Administration-approved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapid antigen test kit, which can be useful in a prolonged pandemic to reduce transmission by allowing suspected individuals to self-sampling. We evaluated the performances of High sensitive AQ+ Rapid SARS-CoV-2 Antigen Test (AQ+ kit) using nasopharyngeal swabs (NPs) and saliva specimens from the same patients in laboratory conditions. Methods: The real-time reverse transcription-polymerase chain reaction (rRT-PCR) test result was used for screening the inrolled individuals and compared as the gold standard. NP and saliva samples were collected from 100 rRT-PCR positives and 100 negative individuals and tested with an AQ+ kit. Results: The AQ+ kit showed good performances in both NP and saliva samples with an overall accuracy of 98.5% and 94.0%, and sensitivity of 97.0% and 88.0%, respectively. In both cases, specificity was 100%. AQ+ kit performance with saliva was in the range of the World Health Organization recommended value. Conclusion: xOur findings indicate that the saliva specimen can be used as an alternative and less invasive to NPs for quick and reliable SARS-CoV-2 antigen detection.

2.
Health Sci Rep ; 6(4): e1213, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2300667

ABSTRACT

Background and Aims: The coronavirus disease 2019 (COVID-19) has brought serious threats to public health worldwide. Nasopharyngeal, nasal swabs, and saliva specimens are used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, limited data are available on the performance of less invasive nasal swab for testing COVID-19. This study aimed to compare the diagnostic performance of nasal swabs with nasopharyngeal swabs using real-time reverse transcription polymerase chain reaction (RT-PCR) considering viral load, onset of symptoms, and disease severity. Methods: A total of 449 suspected COVIDCOVID-19 individuals were recruited. Both nasopharyngeal and nasal swabs were collected from the same individual. Viral RNA was extracted and tested by real-time RT-PCR. Metadata were collected using structured questionnaire and analyzed by SPSS and MedCalc software. Results: The overall sensitivity of the nasopharyngeal swab was 96.6%, and the nasal swab was 83.4%. The sensitivity of nasal swabs was more than 97.7% for low and moderate C t values. Moreover, the performance of nasal swab was very high (>87%) for hospitalized patients and at the later stage >7 days of onset of symptoms. Conclusion: Less invasive nasal swab sampling with adequate sensitivity can be used as an alternative to nasopharyngeal swabs for the detection of SARS-CoV-2 by real-time RT-PCR.

4.
Heliyon ; 8(10): e11043, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2113687

ABSTRACT

Epidemiological data of specific respiratory pathogens from the pre-COVID-19 period are essential to determine the effects of the COVID-19 pandemic on other respiratory infections. In this study, we revealed the pre-COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. We tested 3170 samples collected from 2008 to 2012 for a panel of respiratory viruses; RSV, human metapneumovirus (hMPV), human parainfluenza viruses (hPIV) 1, 2, 3, and adenovirus. Five hundred fifty-five samples (17.5 %) were positive for RSV, including 2.5% having co-infections with other viruses. Genotypic characterization of RSV showed that RSV-A (82%) contributed more acute respiratory infections than RSV-B (18%). Clinical features were similar with RSV-A and RSV-B infections. However, children with RSV-B were more likely to have upper respiratory infections (URI) (10% vs. 29%, p = 0.03). Among RSV-A cases, hospitalization was higher for ON1 cases (25%, ON1 vs. 8%, NA1, p = 0.04), whereas the recovery without a disability was higher among the NA1 cases (56%, ON1 vs. 88%, NA1, p = 0.02). The time to the most recent common ancestor (TMRCA) for RSV in Bangladesh was 1949 for RSV-A and 1944 for RSV-B. This study revealed the genotypic diversity and evolutionary relatedness of RSV strains in Bangladesh and provided pre-COVID molecular epidemiology data to understand better the COVID-19 impact on upcoming RSV epidemiology in Bangladesh.

5.
Sci Rep ; 12(1): 1438, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1655618

ABSTRACT

The protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited due to the current vaccination or natural infection is a global concern. We aimed to investigate the rate of SARS-CoV-2 infection and its clinical features among infection-naïve, infected, vaccinated, and post-infection-vaccinated individuals. A cohort was designed among icddr,b staff registered for COVID-19 testing by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). Reinfection cases were confirmed by whole-genome sequencing. From 19 March 2020 to 31 March 2021, 1644 (mean age, 38.4 years and 57% male) participants were enrolled; where 1080 (65.7%) were tested negative and added to the negative cohort. The positive cohort included 750 positive patients (564 from baseline and 186 from negative cohort follow-up), of whom 27.6% were hospitalized and 2.5% died. Among hospitalized patients, 45.9% had severe to critical disease and 42.5% required oxygen support. Hypertension and diabetes mellitus were found significantly higher among the hospitalised patients compared to out-patients; risk ratio 1.3 and 1.6 respectively. The risk of infection among positive cohort was 80.2% lower than negative cohort (95% CI 72.6-85.7%; p < 0.001). Genome sequences showed that genetically distinct SARS-CoV-2 strains were responsible for reinfections. Naturally infected populations were less likely to be reinfected by SARS-CoV-2 than the infection-naïve and vaccinated individuals. Although, reinfected individuals did not suffer severe disease, a remarkable proportion of naturally infected or vaccinated individuals were (re)-infected by the emerging variants.


Subject(s)
COVID-19/pathology , Reinfection/epidemiology , Adult , COVID-19/complications , COVID-19/virology , Cohort Studies , Diabetes Complications/pathology , Female , Humans , Hypertension/complications , Male , Middle Aged , RNA, Viral/analysis , RNA, Viral/metabolism , Reinfection/diagnosis , Reinfection/virology , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Vaccination/statistics & numerical data
6.
J Clin Lab Anal ; 36(2): e24203, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1589068

ABSTRACT

BACKGROUND: Globally, real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the reference detection technique for SARS-CoV-2, which is expensive, time consuming, and requires trained laboratory personnel. Thus, a cost-effective, rapid antigen test is urgently needed. This study evaluated the performance of the rapid antigen tests (RATs) for SARS-CoV-2 compared with rRT-PCR, considering different influencing factors. METHODS: We enrolled a total of 214 symptomatic individuals with known COVID-19 status using rRT-PCR. We collected and tested paired nasopharyngeal (NP) and nasal swab (NS) specimens (collected from same individual) using rRT-PCR and RATs (InTec and SD Biosensor). We assessed the performance of RATs considering specimen types, viral load, the onset of symptoms, and presenting symptoms. RESULTS: We included 214 paired specimens (112 NP and 100 NS SARS-CoV-2 rRT-PCR positive) to the analysis. For NP specimens, the average sensitivity, specificity, and accuracy of the RATs were 87.5%, 98.6%, and 92.8%, respectively, when compared with rRT-PCR. While for NS, the overall kit performance was slightly lower than that of NP (sensitivity 79.0%, specificity 96.1%, and accuracy 88.3%). We observed a progressive decline in the performance of RATs with increased Ct values (decreased viral load). Moreover, the RAT sensitivity using NP specimens decreased over the time of the onset of symptoms. CONCLUSION: The RATs showed strong performance under field conditions and fulfilled the minimum performance limit for rapid antigen detection kits recommended by World Health Organization. The best performance of the RATs can be achieved within the first week of the onset of symptoms with high viral load.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , COVID-19 Serological Testing/statistics & numerical data , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Reagent Kits, Diagnostic/virology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL